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ABSTRACT

We present a computational method for the prediction
of functional modules encoded in microbial genomes.
In this work, we have also developed a formal measure
to quantify the degree of consistency between the
predicted and the known modules, and have carried
out statistical significance analysis of consist-
ency measures. We first evaluate the functional rela-
tionship between two genes from three different
perspectives—phylogenetic profile analysis, gene
neighborhood analysis and Gene Ontology assign-
ments. We then combine the three different sources
of information in the frameworkofBayesian inference,
and we use the combined information to measure the
strength of gene functional relationship. Finally, we
apply a threshold-based method to predict functional
modules. By applying this method to Escherichia coli
K12, we have predicted 185 functional modules. Our
predictions are highly consistent with the previously
known functional modules in E.coli. The application
results have demonstrated that our approach ishighly
promising for the prediction of functional modules
encoded in a microbial genome.

INTRODUCTION

The worldwide sequencing efforts of microbial genomes (http://
www.ncbi.nlm.nih.gov/genomes/MICROBES/Complete.html,
http://www.sanger.ac.uk/Projects/Microbes, http://www.tigr.
org/tdb/mdb/mdbcomplete.html and http://microbialgenome.
org) have led to the completion of over 200 microbial gen-
omes, and this number will continue to increase very rapidly.
We expect to see over a thousand sequenced genomes within
the next few years. This wealth of genomic data provides

unprecedented opportunities for computational biologists
to unveil the enormous amount of information encoded in
the genomes about the biological machinery of these
micro-organisms.

The complex biological processes in a living microbial cell,
including metabolism, regulations and signal transduction,
are carried out by a large set of functional modules at various
levels. These functional modules are made up of interacting
biomolecules and serve as the basic building blocks of the
complex biological machinery in a microbial cell. Some of
the functional modules are organized in a hierarchical manner
while others could serve in multiple levels forming a complex
organizational network. At the very basic level in the func-
tional hierarchy is the set of operons (1,2) (we also consider
single-gene operons here), each of which are arranged in
tandem in the genome and share a common promoter and a
common terminator. A regulon is a group of operons that are
regulated by a common transcriptional regulator (1,2), and a
modulon is a group of regulons that are controlled by more
global regulators and respond to more general physiological
states (1,2). At the top of this functional hierarchy is a set of
stimulons, each of which consists of a collection of operons,
regulons and/or modulons that respond to a common envir-
onmental stimulus (1,2). In general, functional modules at
different levels are made up of combinations of operons, regu-
lons, modulons and possibly stimulons, many of which might
have ‘conserved’ components and structures across multiple
(related) microbial organisms. We expect that the interactions
of these functional modules play the essential roles in the
entire functionality of a microbial organism (3,4).

In this paper, we present a new computational framework
for the prediction of functional modules in a microbial organ-
ism through comparative genome analysis and application of
Gene Ontology (GO) (5) information. Our focus will be on the
identification of genes involved in a functional module rather
than the detailed interaction relationships among these genes.
This study provides a basis for further prediction of detailed
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gene functions and prediction of biological (metabolic,
signaling and regulatory) networks.

Comparative genome analysis is one of the most powerful
tools to unravel the information encoded in a genome (6,7).
By identifying conserved elements across multiple genomes,
researchers have been able to uncover biological functions and
structures at different levels of the biological machinery in a
microbial cell. Successful applications of using such a strategy
include predictions of gene functions (8–10), cis-regulatory
elements (11,12), operons (13,14) and regulons (11,15).

Our approach to the identification of functional modules
is based on three classes of information: (i) co-evolutionary
information of genes that are encoded in phylogenetic pro-
files (8); (ii) conserved gene neighborhood information,
which reflects if genes have ‘conserved’ adjacency relation-
ship across multiple microbial genomes and, hence, possibly
suggest their functional relatedness; and (iii) functional
relatedness information of genes that are encoded in the GO
classification (5,16). GO is a dynamically controlled vocabu-
lary that can be applied to all organisms and has been used to
measure protein or gene relationships (17–20). In this paper,
we define a similarity measure among GO terms to evaluate
the functional relationship of genes.

Each of the three measures provides a different perspect-
ive about functional relationships among genes. Information
derived through each of them is then combined using a
Bayesian inference framework. Using this combined score,
we predict whether two genes belong to the same functional
module. We use a graph representation to describe such a
functional relatedness relationship. That is, if two genes are
predicted to belong to the same functional module, they will
have an edge linking their representative nodes in this graph
representation. We believe that a functional module, in
general, should be represented by a group of genes that are
highly connected in this graph representation. In addition, each
‘highly connected’ subgraph may be part of a larger and also
highly connected subgraph representing for functional mod-
ules at different levels in the biological machinery of a micro-
bial cell. We have applied this computational procedure to
the genome of Escherichia coli K12. On the 2579 genes of
E.coli that have been assigned biological process GO terms,
we have predicted a large interaction network involving these
genes. Then using a particular segmentation strategy on this
network, we have obtained 185 highly connected modules
covering 654 genes. By comparing these predicted modules
to the known pathways, regulons and operons in the Eco Cyc
(21) and KEGG (22) databases, we have observed that the
highest matching degrees (see definition later) achieved by
these predicted modules are significantly higher than those
achieved by randomly generated modules. We believe that
this large interaction network contains a great amount of
information about functional modules and relationships
among them in E.coli. The predicted modules presented in
this paper represent probably only a small subset of the func-
tional modules in E.coli. In our future work, we intend to fully
investigate the functional modules and their organizational
structures by further refining the large network prediction
and exploring more sophisticated strategies to identify many
more such functional modules.

There have been numerous efforts in the past few years,
devoted to the discovery of molecular modules through

computational methods, as exemplified by the previous
works (19,20,23–25). Lee et al. (19) compared different
classes of data (including the physical and genetic interaction
datasets, mRNA co-expression data, functional links extracted
through literature search, prediction of gene fusion events
and phylogenetic profile analysis) and integrate them by
using a Bayesian framework, and Lee et al. have applied
this capability for the prediction of functional relatedness of
genes in Saccharomyces cerevisiae. von Mering et al. (20) first
developed quantitative ways to measure functional relation-
ship among genes from three different sources of information
(including gene fusion, chromosomal proximity and phylo-
genetic profiles) and predicted functional modules by using
a clustering algorithm. Spirin and Mirny (23) developed
algorithms to analyze the structural properties of a predicted
interaction network to identify the subsets of genes that are
densely connected among themselves but sparsely connected
with others. Yamada et al. (24) extracted gene modules from
metabolic pathways by identifying genes that share similar
phylogenetic profiles. Yanai and Delisi (25) predict gene
links by using the same sources of information as described
previously (20) and use the union operation to combine the
three types of links to predict gene modules. The gene modules
predicted by all these studies have shown some level of con-
sistency with the well-established biological concepts as
described in COGG (26), Eco Cyc (21) and KEGG (22).

Our approach differs significantly from the previous
methods, as summarized below: (i) we utilize both the phylo-
genetic and the neighborhood profiles obtained from the com-
parative genome analysis; (ii) we explicitly incorporate the
GO information into our evaluation of functional relationships
of genes; (iii) we combine different sources of information
in the framework of the Bayesian inference; and (iv) we deve-
lop a formal measure to quantify the degree of consistency
between the predicted and the known modules, and we provide
analysis of statistical significance for such comparisons.

MATERIALS AND METHODS

We first evaluate the functional relationships among genes
from three different perspectives: one based on GO assign-
ments and the other two based on comparative genome
analysis. We, then, combine these different measures by
using a Bayesian inference to predict functional modules.

Gene Ontology

The GO Consortium (5) has developed three separate
ontologies—molecular function, biological process and cellu-
lar component—to describe the attributes of gene products,
where molecular function defines what a gene product does at
the biochemical level without specifying where or when the
event actually occurs or its broader context; biological process
describes the contribution of a gene product to a biological
objective; and cellular component refers to where in the cell a
gene product functions. Each GO is structured as a directed
acyclic graph, wherein each term is a child of one or multiple
parents, and child terms are instances or components of parent
terms. For example, in Figure 1, the term carbohydrate bio-
synthesis (GO: 0016051) is an instance of the term carbo-
hydrate metabolism (GO: 0005975) as well as an instance
of the term macromolecule biosynthesis (GO: 0009059).
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From another point of view, from each GO term V, we
can induce a directed acyclic graph that has the following
properties:

(i) The bottommost level of the graph is V itself, and at upper
levels are its ancestor GO terms. Particularly, at the top-
most level is the term Gene_Ontology (GO: 0003673).

(ii) Given two GO terms V1 and V2, if V1 is one of the ancestors
of V2; then, the graph induced from V1 is completely
included as a subgraph in the graph induced from V2.

Figure 1 shows the graph induced from the term UDP-N-
acetylgalactosamine biosynthesis (GO: 0019277). Note that
the graph induced from a GO term can also be represented by
a collection of paths with each path corresponding to a complete
trace from the bottommost level (i.e. the GO term of interest
itself) to the topmost level (i.e. the term Gene_Ontology).

For example, one possible path in the graph of Figure 1 is
as follows:

UDP-N-acetylgalactosamine biosynthesis (GO:
0019277) ! amino sugar biosynthesis (GO: 0046349) !
carbohydrate biosynthesis (GO: 0016051) ! macromolecule
biosynthesis (GO: 0009059) ! biosynthesis (GO: 0009058)
! metabolism (GO: 0008152) ! physiological process
(GO: 0007582) ! biological_process (GO: 0008150) ! Gen-
e_Ontology (GO: 0003673).

The number of terms along the longest path in a graph is
called the depth of the graph. For example, the depth of the
graph for Figure 1 is 9. The depth of a graph reflects how
specific the GO term is in describing the attributes of gene
products. Hence, a GO term is always more specific than its
ancestor GO terms.

Figure 1. The directed acyclic graph induced from the GO term UDP-N-acetylgalactosamine biosynthesis (GO: 0019277), wherein at the bottommost level is the
GO term of interest itself, and at the upper levels are all its ancestors, adapted from QuickGO Go Browser (http://www.ebi.ac.uk/ego/).
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In the rest of this paper, we do not differentiate between a
GO term and the graph induced from it. When quantifying the
similarity between two GO terms, it is desired that both their
commonality and individual specificities (in describing the
attributes of gene products) can be captured simultaneously.
Let Vs and Vt be the graphs induced from two GO terms,
respectively. We define their similarity s(Vs, Vt) as follows:

S � max
Ls2Vs;Lt2Vt

n the number of common

terms between Ls and Lt

o
, 1

where Ls and Lt are the paths of Vs and Vt, respectively. If
s(Vs, Vt) is large, it means that the two GO terms are both
highly specific and share much commonality in describing the
attributes of gene products; if SGO(Vs, Vt) is small, it means that
either the two GO terms are not highly specific or they do not
share much commonality; and, if s(Vs, Vt) > s(Vu, Vv), it means
that the most recent common ancestor of Vs and Vt is more
specific than the most recent common ancestor of Vu and Vv.

The above defined similarity measure is then used to assess
the functional relationship among genes (through their pro-
ducts) based on their biological process GO assignments.
Because a gene product may be involved in more than one
biological process, it may be assigned with multiple GO terms,
and, therefore, multiple GO graphs may be induced. Let V(g)
denote all the GO terms assigned to a gene g. We define the
GO similarity SGO for a pair of genes gi and gj as the maximum
similarity of all possible combinations of V(gi) and V(gj), i.e.

SGOðgi‚gjÞ � max
Vi2V gið Þ‚ Vj2 V gjð Þ

s Vi‚Vj

� �
‚ 2

where Vi and Vj are the GO terms assigned to gi and gj,
respectively. If SGO(gi, gj) is large, then at a very specific
level the two genes are involved in at least one common
biological process (e.g. both of them are involved in the
UDP-N-acetylgalactosamine biosynthesis); and if SGO(gi, gt)
is small, then only at a very general level can the two genes
be considered to be involved in the same biological process
(e.g. both of them are involved in the physiological process).

Our similarity measure for GO annotations is very similar in
concept to the information-content based semantic similarity
defined by Lord et al. (27), although the two definitions treat in
different ways how specific the most recent common ancestor
of two GO terms is. In our definition, the specificity of a GO
term is reflected by the number of GO terms along the longest
path (distance) to the topmost level GO term, whereas in (27)
the specificity is reflected by the number of genes that are
assigned with it or its descendant GO terms. When assessing
the functional relationship among genes using the similarity
measure of GO terms, we take a different approach from that
of Lord et al. (27). Given all GO terms assigned to two genes,
we use the maximum similarity of all term pairs, whereas Lord
et al. use the average similarity of all term pairs. We believe
that the difference between the implementations of ours and
Lord et al.’s is minor compared with their commonality at the
conceptual level.

As we focus on the prediction of functional modules, which
are basic building blocks of the biological machinery of a
microbial cell for carrying out complex biological processes,
we are most interested in whether a specific gene is involved in
related biological processes and have consequently only used

the biological process GO annotations of genes. Out of
the 4311 genes in E.coli K12 (release of December 2003),
2579 genes have been assigned biological process GO terms
by the GO Annotation project (16) (release of September
2004). In this paper we focus on these 2579 genes. These
genes form 3 324 331 gene pairs, among which 46 009 pairs
whose two genes belong to the same functional module (i.e.
an operon, regulon or pathway) according to Eco Cyc (21) are
considered to form the positive set, and the remaining
3 278 322 pairs are considered to form the background (or
called random) set. Note that a random set is not necessarily
an equivalent to a negative set, where the former consists of
the pairs whose two genes have not been confirmed by experi-
ments to be involved in the same functional module, and the
latter consists of the pairs whose two genes have been con-
firmed by experiments not to be involved in the same func-
tional module. Since our knowledge about the role of a protein/
gene in biological processes is still accumulating and evolving,
it might be difficult to identify a true negative set. Hence, we
use a random set rather than a negative set.

The means and standard deviations of SGO(gi, gj) for both
the positive and the random sets are summarized in Table 1.
We have performed a c2-test (28) to check if the distribution
of SGO(gi, gj) is different for the positive and the random sets.
The c2-statistics (four bins have been used for the c2-test, so
that there are �32, 41, 15 and 27% of positive pairs, and 37,
37, 16 and 10% random pairs falling into the four bins, respect-
ively) is corresponding to a P-value less than 10�4, which
reveals that the distribution of SGO(gi, gj) for the positive
set is significantly different from the random set. Figure 2
shows the distribution of SGO(gi, gj) for the positive and the
random sets. From this figure, we can see that a pair of genes
of the same functional module (operon, regulon or pathway)
are more likely to have a high degree of GO similarity than a
random pair.

Comparative genome analysis

Among the 145 complete genome sequences of bacteria and
archaea that are available (release of December 2003), we
have used 135 genomes for our comparative genome analysis,
including E.coli K12 as the target genome and the other 134 as
the reference genomes. Let G0, N0 and gi denote the genome,
the number of genes and the i-th (i = 1, . . . , N0) gene of
E.coli K12, and Gk and Nk denote the genome and the number
of genes of the k-th (k = 1, . . . , K, K = 134 in our study)
reference genome, respectively.

The first step in our comparative genome analysis is to
predict orthologous genes for each gene of E.coli K12 in
the reference genomes. We have used the PSI-BLAST (29)
with an E-value of 10�6 to search for the bi-directional best

Table 1. Means and standard deviations of SGO(gi,gj), d(gi, gj), SN(gi, gj) and

Combined(gi, gj) for the positive and the random sets

SGO(gi, gj) d(gi, gj) SN(gi, gj) Combined(gi, gj)
Mean SD Mean SD Mean SD Mean SD

Positive
set

3.652 1.871 23.273 11.365 0.864 0.436 0.286 1.192

Random
set

3.111 1.244 26.882 16.077 0.720 0.266 �0.262 0.813
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hits (BDBH) and have obtained the following two profiles for
each gene of E.coli K12, gi (i = 1, . . . , N0):

(i) The phylogenetic profile of gi is a K-dimensional binary
vector indicating the presence or absence of the ortho-
logous genes of gi in the reference genomes.

(ii) The neighborhood profile is a K-dimensional vector with
each element indicating the absence or the order of the
orthologous genes of gi along the reference genomes.

These two profiles are then used to evaluate the functional
relationships of genes.

Dissimilarity of phylogenetic profiles. Let xi � [xi1, xi2, . . . ,
xik]

T denote the phylogenetic profile of gene gi, with xik = 1
representing the presence and xik = 0 for the absence of gi in
Gk. Given the phylogenetic profiles xi and xj for a pair of genes
gi and gj, we define their dissimilarity d(gi, gj) as follows:

dðgi‚gjÞ �
dHammingðxi‚xjÞ

1 þ gEntropyðxi‚xjÞ
‚ 3

where dHamming(xi, xj) represents the Hamming distance
between xi and xj, g is a non-negative constant and has been
set as 2 in our study, and Entropy(xi, xj) is the entropy of the
common part of xi and xj and is computed as follows:

Entropyðxi‚xjÞ ¼ �p log p� 1� pð Þ log 1� pð Þ 4

with p being the frequency of 1’s in the common part. The
dissimilarity between xi and xj ranges from 0 to K, with 0 and
K corresponding to the identical and complementary phylo-
genetic profiles, respectively, and is smaller when xi and xj

have a smaller Hamming distance and/or a more diverse
common part. We omit further details about how to choose
the value of the constant g to balance between the Hamming
distance and the entropy of xi and xj.

To check if the distribution of d(gi, gj) is different for
the positive and the random sets, we have performed
both Kolmogorov–Smirnov test [by treating d(gi, gj) as an

observation of a continuous random variable] and c2-tests
(28). The Kolmogorov–Smirnov test rejects the hypothesis
that the distribution of d(gi, gj) is the same for the positive
and the random sets with a significance level less than 10�4,
while from the c2-test (nine bins have been used for the c2-test,
so that there are at least 6% of positive pairs and 5.58% of
random pairs in each bin) we have obtained the c2-statistics
value of 1341 corresponding to a P-value less than 10�4.
Therefore, both tests demonstrate that the distribution of
d(gi, gj) for the positive set is significantly different from
the random set. Figure 3 shows the distributions of d(gi, gj)
for the positive and the random sets. Note that a pair of genes
from the same functional module are less likely to have a large
measure of dissimilarity than a random pair.

Likelihood of neighborhood profiles. Let yi � [yi1, yi2, . . . ,
yik]

T denote the neighborhood profile of a gene gi. When
the k-th element of yi, yik, is 0, it stands for that the orthologous
gene of gi is absent from Gk; when yik is n 6¼ 0, it stands for that
the orthologous gene of gi is ordered as the n-th gene along Gk.
We make the following assumptions about the statistical
model for the neighborhood profiles:

(i) For each gene gi and each reference genome Gk, gi is
present in Gk with probability pik; and when present,
the order of gi along Gk is uniformly distributed over
{1, 2, . . . , Nk}, i.e.

p yik ¼ nð Þ ¼ 1�pik‚ when n ¼ 0

pik=Nk‚ when n ¼ 1‚2‚ . . . ‚ Nk:

�

(ii) For each gene gi, the elements of yi are independent, i.e.

P yik‚yilð Þ ¼ P yikð ÞP yilð Þ‚ k‚ l 2 f1‚2‚ . . . ‚Kg and k 6¼ l:

This means that a gene’s behavior (i.e. the presence/absence
and order) is independent among different reference genomes.

Given a pair of genes gi and gj, under the hypothesis
that gi and gj do not functionally relate to each other, their
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neighborhood profiles yi and yj can be treated as independent
random vectors; hence, the log-likelihood of yi and yj, L(gi, gj),
is computed as follows:

Lðgi‚gjÞ ¼
XK

k¼1

Lðgi‚gj‚GkÞ 5

with L(gi, gj, Gk) standing for the log-likelihood of yik and yjk

and are being computed as follows:

Lðgi‚gj‚GkÞ ¼ Iðyik ¼ 0‚yjk ¼ 0Þ log P00

þ Iðyik ¼ 0‚yjk 6¼ 0Þ log P01

þ Iðyik 6¼ 0‚yjk ¼ 0Þ log P10

þ Iðyik 6¼ 0‚yjk 6¼ 0Þ log P11‚ 6

where I(·,·) is 1 if and only if both criteria within the paren-
theses are satisfied and is 0 otherwise, P00 stands for the
probability that neither gi nor gj is present, P01 stands for
the probability that only gj is present, P10 stands for the prob-
ability that only gi is present, and P11 stands for the probability
that both gi and gj are present and have a distance not more
than dk(i, j) with dk(i, j) � |yik � yjk| being the observed dis-
tance between gi and gj (in terms of the number of genes in
between) along Gk. Since yik and yjk can be treated as inde-
pendent random variables under the hypothesis that gi and gj

are functionally unrelated, these four probabilities are com-
puted as follows:

P00 ¼ ð1� pikÞð1� pjkÞ:
P01 ¼ ð1� pikÞpjk:

P10 ¼ pikð1� pjkÞ:

P11 ¼ pik pjk

dkði‚ jÞð2Nk�dkði‚ jÞ� 1Þ
NkðNk � 1Þ :

Note that P11 is very small when dk(i, j), pik and/or pjk are
small. This is consistent with our intuition—it is very unlikely
that two functionally unrelated genes are simultaneously
present at a genome with a small distance, especially when
these two genes are not highly conserved at this genome.

The likelihood L(gi, gj) is the evidence supporting the
hypothesis that the two genes do not functionally relate to
each other. The larger L(gi, gj) is, the more supportive the
neighborhood profiles yi and yj are for this hypothesis; and
the smaller L(gi, gj) is, the more yi and yj are against this
hypothesis (i.e. the more supportive yi and yj are for the altern-
ative hypothesis that the two genes functionally relate to each
other in some way).

We use the score

SNðgi‚gjÞ � �Lðgi‚gjÞ 7

to evaluate the strength of the functional relationship between
gi and gj in terms of their neighborhood profiles. In this way,
a larger SN(gi, gj) implies a stronger functional relationship
between gi and gj.

In practice, pik is unknown and must be estimated from
phylogenetic profiles. We first group all the 134 reference
genomes into 14 groups so that each group corresponds to
a phylum (as shown in Table 2), and then assume that pik is
identical within the same group of genomes for each gene gi.

The maximum-likelihood estimation of pik is computed as the
frequency of gi in the group that Gk belongs to, i.e.

pik ¼
the number of genomes having gi in the group Gk belongs to

the number of genomes in the group Gk belongs to
:

8

We have performed both the Kolmogorov–Smirnov test and
the c2-test to check if the distribution of SN(gi, gj) is different
for the positive and the random sets. The Kolmogorov–
Smirnov test rejects the hypothesis that the distribution of
SN(gi, gj) is the same for the positive and the random sets
with significance level less than 10�4; and from the c2-test
(seven bins have been used for the c2-test, so that there are at
least 8% of positive gene pairs and 5.7% of random gene pairs
in each bin) we have obtained the c2-statistics value of 7583
corresponding to a P-value less than 10�4. Therefore, both
tests demonstrate that the distribution of SN(gi, gj) for the pos-
itive set is significantly different from the random set. Figure 4
shows the distribution of SN(gi, gj) for both the positive and the
random sets. As shown in the figure, a pair of genes of the same
functional module are more likely to have a large neighbor-
hood score than a random pair.

Bayesian inference for information fusion

As we have shown, the GO similarity measure SGO(gi, gj), the
dissimilarity measure of phylogenetic profiles d(gi, gj), and the
neighborhood score SN(gi, gj) reflect the possible functional
relationship between two genes from different perspectives.
To fully utilize the information from all the three sources, we
combine them by using a Bayesian inference approach.

Given two genes gi and gj, we assume that their GO
assignments are conditionally independent of their comparat-
ive genome analysis. Therefore, based on the three measures,
SGO(gi, gj), d(gi, gj) and SN(gi, gj), the odds of gi and gj belong-
ing to the same functional module can be computed as follows:

Pðgi and gj 2 the same module j SGOðgi‚gjÞ‚dðgi‚gjÞ‚SNðgi‚gjÞÞ
Pðgi and gj =2 the same module j SGOðgi‚gjÞ‚dðgi‚gjÞ‚SNðgi‚gjÞÞ

¼
PðSGOðgi‚gjÞ j gi and gj 2 the same moduleÞ
PðSGOðgi‚gjÞ j gi and gj =2 the same moduleÞ

·
Pðdðgi‚gjÞ‚SNðgi‚gjÞ j gi and gj 2 the same moduleÞ
Pðdðgi‚gjÞ‚SNðgi‚gjÞ j gi and gj =2 the same moduleÞ

·
Pðgi and gj 2 the same moduleÞ
Pðgi and gj =2 the same moduleÞ : 9

We use the logarithm of (9), i.e.

Combinedðgi‚gjÞ
� log Pðgi and gj 2 the same module j

SGOðgi‚gjÞ‚dðgi‚gjÞ‚SNðgi‚gjÞÞ
� log Pðgi and gj =2 the same module j

SGOðgi‚gjÞ‚dðgi‚gjÞ‚SNðgi‚gjÞÞ 10

as the combined score for gi and gj. The higher Combined(gi, gj)
is, the stronger the functional relationship between gi and gj we
consider them to have.

Note that the ratios and conditional distributions in the last
three rows of (9) must be known or estimated a priori in order
to calculate Combined(gi, gj) for any pair of genes. To estimate
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them, we consider a pair of genes in the positive set to be in the
same module, and a pair in the random set not to be in the same
module.

On estimating the joint conditional distributions of {d(gi, gj),
SN(gi, gj)} of (9), we have taken two different approaches. One
approach, called the naive Bayesian inference (30), assumes
the conditional independence between d(gi, gj) and SN(gi, gj),
and estimates the conditional distributions of d(gi, gj) and
SN(gi, gj) separately. The second approach, called the Bayesian
inference, directly estimates the joint conditional distribution
of {d(gi, gj), SN(gi, gj)}. Each approach has its own strengths
and limitations. For example, the naive Bayesian inference
approach heavily relies on the assumption of conditional
independence; hence, the resulting estimated joint distribu-
tion may be far away from the true joint distribution when
the assumption is not valid. Whereas, for the Bayesian
inference approach, when estimating the distribution of ran-
dom variables, we need much more observations for a multi-
dimensional random vector than for a one-dimensional
random variable (the number of needed observations grows
exponentially with the dimensionality of the random vector)

Table 2. Group assignments of the 134 reference genomes

Phylum Genomes

Crenarchaeota Aeropyrum pernix, Pyrobaculum aerophilum, Sulfolobus solfataricus, Sulfolobus tokodaii
Aquificae Aquifex aeolicus
Euryarchaeota Archaeoglobus fulgidus DSM 4304, Halobacterium sp. NRC-1, Methanococcus jannaschii, Methanopyrus kandleri AV19, Methanosarcina

acetivorans str. C2A, Methanosarcina mazei Goe1, Methanothermobacter thermautotrophicus, Pyrococcus abyssi, Pyrococcus
horikoshii, Pyrococcus furiosus DSM 3638, Thermoplasma acidophilum, Thermoplasma volcanium

Firmicutes Bacillus anthracis A2012, Bacillus anthracis str. Ames, Bacillus cereus ATCC 14579, Bacillus halodurans, Bacillus subtilis, Clostridium
acetobutylicum, Clostridium perfringens, Clostridium tetani E88, Enterococcus faecalis V583, Lactobacillus plantarum WCFS1,
Lactococcus lactis subsp. lactis, Listeria innocua, Listeria monocytogenes EGD-e, Mycoplasma gallisepticum R, Mycoplasma genitalium,
Mycoplasma penetrans, Mycoplasma pneumoniae, Mycoplasma pulmonis, Oceanobacillus iheyensis HTE831, Staphylococcus aureus
subsp. aureus MW2, Staphylococcus aureus subsp. aureus Mu50, Staphylococcus aureus subsp. aureus N315, Staphylococcus
epidermidis ATCC 12228, Streptococcus agalactiae 2603V/R, Streptococcus agalactiae NEM316, Streptococcus mutans UA159,
Streptococcus pneumoniae R6, Streptococcus pneumoniae TIGR4, Streptococcus pyogenes, Streptococcus pyogenes MGAS315,
Streptococcus pyogenes MGAS8232, Streptococcus pyogenes SSI-1, Thermoanaerobacter tengcongensis, Ureaplasma urealyticum

Bacteroidetes Bacteroides thetaiotaomicron VPI-5482, Chlorobium tepidum TLS, Porphyromonas gingivalis W83
Actinobacteria Bifidobacterium longum NCC2705, Corynebacterium diphtheriae, Corynebacterium efficiens YS-314, Corynebacterium glutamicum ATCC

13032, Mycobacterium bovis subsp. bovis AF2122/97, Mycobacterium leprae, Mycobacterium tuberculosis CDC1551, Mycobacterium
tuberculosis H37Rv, Streptomyces avermitilis MA-4680, Streptomyces coelicolor A3(2), Tropheryma whipplei TW08/27, Tropheryma
whipplei str. Twist

Spirochaetes Borrelia burgdorferi, Treponema pallidum
Chlamydiae Chlamydia muridarum, Chlamydia trachomatis, Chlamydophila caviae GPIC, Chlamydophila pneumoniae AR39, Chlamydophila

pneumoniae CWL029, Chlamydophila pneumoniae J138, Chlamydophila pneumoniae TW-183
Fusobacteria Fusobacterium nucleatum subsp. nucleatum ATCC 25586
Cyanobacteria Gloeobacter violaceus, Nostoc sp. PCC 7120, Prochlorococcus marinus str. MIT 9313, Prochlorococcus marinus subsp. marinus str.

CCMP1375, Prochlorococcus marinus subsp. pastoris str. CCMP1378, Synechococcus sp. WH 8102, Synechocystis sp. PCC 6803,
Thermosynechococcus elongatus BP-1

Nanoarchaeota Nanoarchaeum equitans Kin4-M
Planctomycetes Pirellula sp.
Thermotogae Thermotoga maritima
Proteobacteria Bordetella bronchiseptica, Bordetella parapertussis, Bordetella pertussis, Bradyrhizobium japonicum, Buchnera aphidicola (Baizongia

pistaciae), Buchnera aphidicola str. APS (Acyrthosiphon pisum), Buchnera aphidicola str. Sg (Schizaphis graminum), Campylobacter
jejuni, Candidatus Blochmannia floridanus, Caulobacter crescentus CB15, Chromobacterium violaceum ATCC 12472, Coxiella burnetii
RSA 493, Escherichia coli CFT073, Escherichia coli O157:H7, Escherichia coli O157:H7 EDL933, Haemophilus ducreyi 35000HP,
Haemophilus influenzae Rd, Helicobacter hepaticus ATCC 51449, Helicobacter pylori 26695, Helicobacter pylori J99, Mesorhizobium
loti, Neisseria meningitidis MC58, Neisseria meningitidis Z2491, Nitrosomonas europaea ATCC 19718, Pasteurella multocida,
Photorhabdus luminescens subsp. laumondii TTO1, Pseudomonas aeruginosa PA01, Pseudomonas putida KT2440, Pseudomonas
syringae pv. tomato str. DC3000, Ralstonia solanacearum, Rickettsia conorii, Rickettsia prowazekii, Salmonella enterica subsp. enterica
serovar Typhi, Salmonella enterica subsp. enterica serovar Typhi Ty2, Salmonella typhimurium LT2, Shewanella oneidensis MR-1,
Shigella flexneri 2a str. 2457T, Shigella flexneri 2a str. 301, Sinorhizobium meliloti, Wigglesworthia glossinidia endosymbiont of Glossina
brevipalpis, Wolinella succinogenes, Xanthomonas axonopodis pv. citri str. 306, Xanthomonas campestris pv. campestris str. ATCC
33913, Xylella fastidiosa 9a5c, Xylella fastidiosa Temecula1, Yersinia pestis, Yersinia pestis KIM
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Figure 4. Distribution of SN(gi, gj) for the positive (blue) and the random
(red) sets.
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to achieve the same level of resolution (31); hence, there may
exist a resolution problem with the estimated joint distribution.
Especially for the estimation of

Pðdðgi‚gjÞ‚SNðgi‚gjÞ j gi and gj 2 the same moduleÞ

because there are only a very small percentage of gene pairs
(46 009/3 324 331 � 1.4%) whose two genes are known to
belong to the same functional module based on the current
information of Eco Cyc, the Bayesian inference approach
cannot achieve a high-resolution level. It is an interesting
problem regarding how to find the right tradeoff between
these two approaches, but that is out of the scope of this paper.

We have computed Combined(gi, gj) by using both the naive
Bayesian and Bayesian inferences. We have performed the
Kolmogorov–Smirnov test and the c2-test to check if the
distribution of Combined(gi, gj) is different for the positive
and the negative tests. The Kolmogorov–Smirnov tests reject
the hypothesis that the distribution of Combined(gi, gj) is the
same for the positive and the random sets with a significance
level less than 10�4 for both approaches; and, from the c2-tests
we have obtained the values of c2-statistics as 11 591 and
4866, both corresponding to the P-values less than 10�4,
for the naive Bayesian and Bayesian approaches, respectively.
[The c2-tests have been performed on the normalized
Combined(gi, gj) for both approaches. Although seven bins
have been used, bins have been located differently for the
naive Bayesian and Bayesian approaches. The bins for the
naive Bayesian approach are located at 0.35, 0.36, . . . , 0.41,
so that there are at least 8% of positive gene pairs and 8.92%
of random gene pairs in each bin. The bins for the Bayesian
approach are located at 0.25, 0.26, . . . , 0.31, so that there are at
least 5% positive gene pairs and 5.8% random gene pairs in
each bin.] All these tests demonstrate that the distribution of
Combined(gi, gj) is different for the positive and the random sets,
for both the naive Bayesian and the Bayesian approaches. To
compare these two inference approaches, we have normalized
Combined(gi, gj) so that the normalized Combined(gi, gj) for each
approach ranges from 0 to 1. Figure 5 shows the distributions

of the normalized Combined(gi, gj) for both the positive and the
random sets, and for both the naive Bayesian and the Bayesian
inference approaches. As shown in the figure that (i) for both
approaches, a pair of genes of the same functional module are
more likely to have a large Combined(gi, gj) than a random pair;
and (ii) the naive Bayesian approach discriminates the posit-
ive pairs out of the random pairs more accurately than the
Bayesian approach. So, in the rest of this paper, we focus on
the naive Bayesian inference approach.

Threshold-based module prediction and evaluation

Every two genes will have a score Combined(gi, gj) measuring
their functional relationship. The higher the score, the stronger
their functional relationship is. Note that a negative value of
Combined(gi, gj) does not necessarily mean that the gi and the
gj are less likely to belong to the same functional module,
because the positive and the random sets we have used to
estimate the ratios and conditional distributions in (9) are not
complete. More specifically, the positive set we have used is
only part of the true positive set, and the random set we have
used contains some true positives as well as true negatives,
where by true positive we mean a set consisting of all pairs
whose two genes belong to the same module, and by true
negative we mean a set consisting of all pairs whose two
genes do not belong to the same module.

The genes and their functional connections can be inter-
preted at different levels. At the lowest resolution level, all
genes are functionally connected to form one large network
that is responsible for all activities of a cell; at a higher res-
olution level, genes with stronger functional relationship stand
out and form smaller and densely interacted modules that are
responsible for some specific activities of a cell. At the highest
resolution level, each gene forms a functional module by itself.

To predict biologically meaningful functional modules
of smaller sizes, we apply a simple thresholding method
described as follows. We first compute for each gene gi the
mean (mi) and standard deviation (si) of its functional con-
nection scores Combined(gi, gj) with all other genes gj ( j 6¼ i),
keep the connection between gi and gj if and only if

Combinedðgi‚gjÞ>mi þasi and Combinedðgi‚gjÞ>mj þasj

with a > 0 being a threshold parameter, and call a group of
genes that are directly or indirectly linked as a predicted
functional module.

We choose the value of a to make our predicted modules
consistent as much as possible with the known functional
modules in Eco Cyc, where the consistency is measured by
using the matching degrees defined below.

Matching degree between a pair of known and predicted gene
modules. Let Km be the set of genes in the m-th known func-
tional module, and Cn be the set of genes in the n-th predicted
module, the matching degree between Km and Cn, tmn, is
defined as follows:

tmn ¼ jKm \ Cnj
jKm [ Cnj

‚ 11

where j . j represents for the cardinality of a set, and \ and
[ represent the intersection and union operations between
two sets.
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Figure 5. The normalized Combined(gi, gj) of both naive Bayesian (red) and
Bayesian (blue) inference approaches for both the positive (solid) and the
random (dashed) sets.
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As we demonstrate below, the matching degree tmn defined
in (11) is actually a combination of the measures of sensitivity
and specificity of Cn, where sensitivity = |Km \ Cn|/|Km| and
specificity = |Km \ Cn|/|Cn|.

tmn ¼
jKm\Cnj

jKmjþjCnj�jKm\Cnj
¼ jKmj

jKm\Cnj
þ jCnj
jKm\Cnj

�1

� ��1

¼ ðsensitivity�1 þ specificity�1�1Þ�1

� 2 · sensitivity · specificity

�ðsensitivity þ specificityÞþ1: 12

In the last row of (12) are the first- and second-order terms
of the Taylor expansion [MathWorld—a Wolfram Web
Resource, http://mathworld.wolfram.com/TaylorExpansion.
html] of the original non-linear function of tmn in (11) around
sensitivity=1 and specificity=1. Note that one can add coef-
ficients before sensitivity or specificity in (12) to put different
weights on these two measures.

Highest matching degree for a known module. Let C be the
collection consisting of all the N predicted modules C1, . . . ,
CN, i.e. C � {C1, C2, . . . , CN}. Since tmn is monotonically
increasing as the sensitivity and/or specificity of Cn increases,
by maximizing tmn with respect to all the predicted modules in
C, we pick one particular predicted module for Km that best
balances the measures of sensitivity and specificity. We define
the highest matching degree (HMD) for Km, tm which meas-
ures the matching capability of all the predicted modules of C
to Km, as follows:

tm ¼ max
1<n<N

tmn ¼ max
1<n<N

jKm \ Cnj
jKm [ Cnj

� �
: 13

The so-defined HMD has the following properties:

(i) If the genes in C does not cover any gene of Km, then the
HMD achieved by C for Km is 0.

(ii) If there exist several predicted modules in C each of which
can be perfectly matched with a fraction of Km, then the
HMD achieved by C for Km is the ratio of the maximum
size of these predicted modules to the size of Km.

(iii) If there exists one predicted module Cn one of whose frac-
tions is perfectly matched with the entire Km, then the HMD
achieved by C for Km is the ratio of the size of Km to the size
of Cn.

(iv) If there exists one predicted module Cn that is perfectly
matched with the entire Km, then the HMD achieved by C
for Km is 1.

Let K be the collection consisting of all the M known func-
tional modules, i.e. K � {K1, K2, . . . , KM}. We choose the
value of a so that the average HMD (AHMD) over K [defined
in the following equation] is maximized.

AHMD � 1

M

XM
m¼1

tm ¼ 1

M

XM
m¼1

max
1<n<N

jKm \ Cnj
jKm [ Cnj

� �
: 14

Statistical analysis on the highest matching degree. Let t1,
t2, . . . , tm be the HMDs for K � {K1, K2, . . . , KM} achieved

by our predicted modules C � {C1, C2, . . . , CN}. To evaluate
the statistical significance of {t1, t2, . . . , tM}, we first estimate
the probability distribution of the HMDs for the same
K achieved by a collection of randomly predicted modules
C0 � fC0

1‚C0
2‚ . . . ‚C0

Ng where each C0
n is of the same size as

Cn, and then estimate the Z-score of {t1, t2, . . . , tM}. If the
Z-score is high, then the HMDs achieved by C are statistically
significant. Here by randomly predicted modules we mean a
module that is predicted by randomly picking out the genes
with equal probability and without replacement from the pool
of the N0 genes of E.coli K12.

Given a known functional module Km, because of the nature
of randomness of the functional modules in C0, the matching
degree achieved by each C0

n in C0 and the HMD achieved by
C0 are all random variables; hence, in the following analysis,
we use T 0

mn and T0
m to denote the matching degree and the

HMD for Km achieved by C0
n and C0, respectively.

We first focus on the statistical model of T0
mn. The dis-

tribution of T0
mn can be approximated by using a Binomial

distribution (32) when the number of genes in the known
functional module, |Km|, is small compared with N0, i.e.

P T0
mn ¼ t

� �
� jCnj

zmn

� �
pzmn

m ð1�pmÞðjCnj�zmnÞ‚ 15

where pm � |Km|/N0 and

zmn � t

1 þ t
jKmj þ jCnjð Þ

	 

16

with [·] representing a round-off.
We then turn our attention to the statistical model of T0

m.
Because the modules C0

1‚C0
2‚ . . . ‚C0

N are disjoint, the distri-
bution of T0

m can be approximated based on (15) as follows:

PðT0
m< tÞ¼P

�
max

1<n<N
T0

mn< t
�
¼PðT0

m1< t‚T0
m2< t‚ ...‚T0

mN<tÞ

¼
YN

n¼1

PðT0
mn< tÞ�

YN

n¼1

Xzmn

u¼0

jCnj
u

� �
pu

mð1�pmÞðjCnj�uÞ

17

with zmn being given as in (16).
Let mm and sm be the mean and standard deviation of T0

m,
associated with Km, then ðT 0

m � mmÞ=sm is called the standard-
ized HMD of Km. By using the Central Limit Theorem (32),
the sum of the standardized HMDs over all K � {K1, K2, . . . ,
KM} asymptotically complies to a normal distribution, i.e.

1ffiffiffiffiffi
M

p
XM
m¼1

T0
m � mm

sm
� @ð0‚1Þ: 18

The Z-score of {t1, t2, . . . , tM}, which are the HMDs for
K � {K1, K2, . . . , KM} achieved by our predicted modules
C � {C1, C2, . . . , CN}, is then computed as follows:

Zscore ¼
1ffiffiffiffiffi
M

p
XM
m¼1

tm � mm

sm
: 19

A high Z-score means that {t1, t2, . . . , tM} and, consequently,
our predicted modules in C as well as our prediction method,
are statistically significant.
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EXPERIMENTS AND RESULTS

Performance by using the combined score Combined(gi, gj)

We have performed the following procedure to predict func-
tional modules based on the combined score Combined(gi, gj):

(i) Randomly choose 1250 genes (�50%) out of the gene
pool (consisting of 2579 E.coli K12 genes) to form the
training set, and use the pairs of these training genes to
estimate the ratios and conditional distributions in (9).

(ii) Compute Combined(gi, gj) for all pairs (including the pairs
of the training genes).

(iii) Segment the large interaction network with various a
values to predict functional modules that maximize the
AHMD [defined in (14)].

Owing to the nature of randomness in choosing genes to form
the training set in the first step, the outputs of the following

Table 3. The maximum AHMDs and their associated a-values for the 10

experiments, each of which corresponds to one repeat of the procedure of

forming the training set, computing the combined score and predicting modules

Experiment Pathway Regulon Operon
a AHMD a AHMD a AHMD

1 6.75 0.265 6.5 0.168 6.5 0.164
2 6.25 0.257 5.25 0.171 5.25 0.165
3 7 0.259 5.75 0.192 5.5 0.172
4 6.25 0.260 5.25 0.184 5 0.157
5 6 0.269 5.5 0.194 6 0.181
6 6.25 0.268 5.75 0.183 6 0.171
7 5.25 0.249 5.25 0.190 4.75 0.171
8 6.25 0.288 6 0.217 6 0.188
9 5.75 0.261 4.75 0.191 4.75 0.165

10 6 0.267 5.25 0.200 5.25 0.176

Table 4. The maximum AHMD values, the associated values of a, the number

(N) of predicted modules, the total number (|C|) of genes in all the predicted

modules and the associated Z-scores, for the known pathways, regulons and

operons achieved by using different sources of information

AHMD a N |C| Z-score

Pathways (M = 207)
Combined(gi, gj) 0.265 6.75 185 654 62.293
SN(gi, gj) 0.236 3.75 189 998 58.474
d(gi, gj) 0.0364 3 28 221 4.753
SGO(gi, gj) 0.224 4 106 796 70.103

Regulons (M = 132)
Combined(gi, gj) 0.168 6.5 194 717 37.908
SN(gi, gj) 0.182 3.5 189 1099 40.576
d(gi, gj) 0.0200 2.75 26 431 0.769
SGO(gi, gj) 0.117 3.75 115 959 31.591

Operons (M = 745)
Combined(gi, gj) 0.164 6.5 194 717 32.572
SN(gi, gj) 0.176 5 188 702 39.406
d(gi, gj) 0.0147 3 28 221 0.502
SGO(gi, gj) 0.0708 3.75 115 959 13.868

The phylogenetic and neighborhood profiles are obtained by using the BDBH
method.
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Figure 6. (a) The number of edges as a function of a; and (b) AHMD values for the known pathways, regulons and operons as functions of a.

Table 5. The maximum AHMD values, the associated values of a, the number

(N) of predicted modules, the total number (|C|) of genes in all the predicted

modules and the associated Z-scores, for the known pathways, regulons and

operons achieved by using the combined information, neighborhood profiles

and phylogenetic profiles, respectively

AHMD a N |C| Z-score

Pathways (M = 207)
Combined(gi, gj) 0.248 7.25 191 700 66.694
SN(gi, gj) 0.212 3.5 173 920 52.832
d(gi, gj) 0.0416 3.25 61 416 2.647

Regulons (M = 132)
Combined(gi, gj) 0.176 6 171 1006 45.653
SN(gi, gj) 0.170 3.25 165 1008 37.033
d(gi, gj) 0.0317 3.25 61 416 �1.406

Operons (M = 745)
Combined(gi, gj) 0.164 7.25 191 700 32.959
SN(gi, gj) 0.157 4.5 173 669 36.274
d(gi, gj) 0.0246 3.25 61 416 �0.988

The neighborhood and phylogenetic profiles are obtained by using the
reciprocal smallest distance algorithm (33).
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Figure 7. Predicted modules consisting of at least three genes obtained by using a = 6.75, where edges of red represent for belonging to the same known pathways,
edges of blue represent for belonging to the same known regulons, edges of green represent for belonging to the same known operons, edges of orange represent for
transporter unit, edges of purple represent for having similar GO assignments and edges of black represent for having not been experimentally verified.
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steps, including Combined(gi, gj), the maximum AHMD and
the associated a-value, are all random in essence. Therefore,
we have repeated the above procedure 10 times. Table 3 sum-
marizes the maximum AHMDs and their associated a-values
for these 10 experiments.

As shown in Table 3, all experiments have achieved
similar AHMD for the known pathways, regulons and operons;
and have shown that our predicted functional modules are
matched with the known pathways better than with the
known regulons or operons. Because all the experiments
have shown similar performance in terms of AHMD, without
loss of generality, we focus on the first experiment for the rest
of the analysis.

Comparisons among different sources of information

To see whether the combined score can better describe func-
tional relationships among genes than individual scores, we
have also performed experiments on each individual source of
information, i.e. we have used SGO(gi, gj), d(gi, gj) or SN(gi, gj)
alone as a measure of functional relationship between genes to
predict functional modules. Table 4 summarizes the maximum
AHMD values, the associated values of a, the number (N)
of predicted modules, the total number (|C|) of genes in all
the predicted modules and the associated Z-score for the
experiments based on Combined(gi, gj), SN(gi, gj), d(gi, gj) and
SGO(gi, gj), respectively.

From Table 4, we can see that for the individual information
sources,

(i) The AHMD values and the associated Z-scores achieved
by using the phylogenetic profile dissimilarity mea-
sure d(gi, gj) are much smaller than those achieved by
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using the other information sources, which demon-
strates that d(gi, gj) alone cannot provide sufficient
information to predict functional modules that are
reasonably consistent with the known functional
modules.

(ii) Although the AHMD values for both the GO assignments
and the neighborhood profiles are moderate, their asso-
ciated Z-scores are very high, which demonstrates that
either SGO(gi, gj) or SN(gi, gj) alone already provides suffi-
cient information to achieve sound consistency with the
known functional modules. This observation regarding
the neighborhood profiles makes it very promising as a
measure for the prediction of functional modules for
those microbial genomes that have been sequenced but
do not have much other information (e.g. GO assignments)
available.

(iii) For the GO assignments, the AHMD value and the
associated Z-score for the known pathways are larger
than those for either the known regulons or known
operons, which demonstrate that the functional modules
predicted by using our approach are more consistent with
the known pathways than with the known regulons or
known operons. We have made a similar observation for
the neighborhood profiles.

and for the combined information,

(i) For the known pathways, the AHMD value achieved by
using the combined information Combined(gi, gj) is larger
than that of each individual information source, although
its Z-score is smaller than that of the GO assign-
ments. Because the Z-scores for both Combined(gi, gj) and
SGO(gi, gj) are already very high, and their values of N
and |C| (consequently the sizes of all the predicted
modules) are different, the fact that the former is
smaller than the latter does not necessarily mean that
Combined(gi, gj) is worse than SGO(gi, gj); rather, the obvious
difference among their AHMD values demonstrates
that information fusion can achieve a higher degree of
consistency with the known pathways than individual
information sources.

(ii) For the known operons, though the neighborhood pro-
files alone already provide sufficient information to
achieve sound consistency, the GO assignments do not.
The incapabilities of SGO(gi, gj) greatly undermine the
capabilities of SN(gi, gj) during the information fusion;
hence, either the AHMD value or Z-score for the combined
information Combined(gi, gj) cannot even be as high as that
of SN(gi, gj) alone. We have made similar observations
about known regulons.

The observation that phylogenetic profiles do not seem to
contribute much to the identification of functional modules,
while surprising, is consistent with the observation made by
other authors (19). To exclude the possibility that this might be
an artifact of the specific prediction method for orthologous
genes using BDBH, we have also used the reciprocal smallest
distance algorithm (33) for the prediction of orthologous genes,
and have then performed the same experiment of comparing
different information sources. The results are summarized in
Table 5, for which we have made the same observations as
above.

Modules predicted using Combined(gi, gj) for
a particular choice of a
For the combined information Combined, Figure 6 shows the
total number of edges and the AHMD values for the known
pathways, regulons and operons as functions of a. Observe
from the figure that (i) the number of edges decreases rapidly
as the value of a increases; (ii) the tendencies of the three
AHMD values all first increase and then decrease as the value
of a increases; and (iii) these three AHMD values achieve
their maximum around a 2 [6, 7].

When using a = 6.75, we have obtained 185 predicted
functional modules covering 654 genes. Figure 7 shows those
predicted modules consisting of at least three genes, where
genes are identified by using their PIDs. For most cases, genes
within the same predicted modules belong to the same
functional modules according to Eco Cyc, or have similar
GO assignments. This means that we can predict functional
units based on our approach. For example, all genes in the
module of Figure 8 are involved in the flagellar metabolism
pathway according to KEGG (22), even though only the
colored genes and edges are confirmed by Eco Cyc to belong
to the same operons or regulons. We have also made the
following interesting observations:

(i) Genes within the same predicted module belong to several
different pathways, as shown in Figure 9. For the predicted
module (a) involving the histidine and the tryptophan bio-
syntheses, the two pathways are connected through the
gene hisA (16129965), which is assigned to be involved
in both pathways by GO Annotation (16). For the predicted
module (b) involving the methionine and the cysteine bio-
syntheses, the two pathways are connected through the
gene metB (16131777), which is assigned to be involved
in both pathways by KEGG (22). For the predicted module
(c) involving the glycerolipid metabolism, glycerol-3-P
ABC transporter and branched amino acid ABC transpor-
ter, the first two parts are connected because they are both
related to glycerol, and the last two parts are connected
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16129238

16129620
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Riboflavin metabolism

Figure 10. Genes are connected mainly because they are conserved
neighboring genes along the same strand of DNA.
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Figure 11. Predicted modules that have not been experimentally
verified.
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because they have similar GO assignments (i.e. transport).
So far, we have not been able to find experimental evidence
to support our predicted module in (d) which involves the
pantothenate and folate biosyntheses, but this prediction
may be due to that both pathways are related to the pre-
cursors for co-enzyme biosynthesis (34).

(ii) Genes are connected in a predicted module mainly because
they are conserved neighboring genes on the same strand

of the genome, as nusB (16128401) and ribH (16128400)
in the module of Figure 10 and other five modules each
consisting of one pair of genes. These genes are highly
likely to be functionally related, and deserve further
experimental investigations.

(iii) Genes are connected via their paralogous genes. For exam-
ple, we have predicted two modules each consisting of
two genes that do not have any obvious commonality.
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For the pair amtB (16128436) and glnB (16130478), one of
the paralogous genes of glnB, glnK (16128435), belongs to
the same operon as amtB according to Eco Cyc. For the
other pair purU (16129193) and add (16129581), one of the
paralogous genes of purU, purN (16130425), is involved
the same pathway (purine metabolism) as add.

(iv) So far, we have not been able to find evidences in Eco Cyc,
KEGG or GO to support our predicted modules in Figure 11
and the other five modules each consisting of two genes.
They deserve further experimental investigations.

Modules predicted using Combined(gi, gj) for
a particular gene

We have also focused on one particular gene hemL (16128147)
to see how its involved module changes as a is changed.
Figure 12 shows three predicted modules that hemL is
involved for a = 6.75, a = 5.5 and a = 4, respectively.
When a = 6.75, the predicted module consists of only four
genes, all of which are involved in the porphyrin and chloro-
phyll metabolism pathway. When a decreases to 5.5, the
predicted module consists of 79 genes, which are involved
in valine, leucine and isoleucine biosynthesis, lysine bio-
synthesis, arginine metabolism, glutamate metabolism, pro-
line biosynthesis and degradation, methionine metabolism,
cysteine biosynthesis, biosynthesis of proto- and siroheme,
biosynthesis of steroids, and sulfate transport pathways,
respectively. When a decreases further to 4, the predicted
module consists of 1116 out of all 2579 genes.

As we mentioned earlier, the functional relationships among
genes can be viewed at different levels. At a very high res-
olution level (as shown in Figure 12a), only a small number of
genes are grouped together so that the group is responsible for
one specific activity; at a lower resolution level (as shown in
Figure 12b), a relatively larger number of genes are grouped

together so that the group is responsible for more general
activities; and, at the lowest resolution level (as shown in
Figure 12c) most of the genes are connected directly or indir-
ectly so that the group is responsible for most activities of a
cell. Consequently, by varying the threshold values, we can
predict the hierarchical structure of the functional modules.

CONCLUSIONS

We have presented a new computational method to predict
functional modules by combining the information from the
comparative genome analysis and the GO in the frame-
work of the Bayesian inference. In this work, we have also
developed a formal measure to quantify the degree of con-
sistency between the predicted and the known modules, and
provided analysis of the statistical significance for such con-
sistency degrees. We have applied our method to the genome
of E.coli K12, and have observed that (i) the predicted mod-
ules are more consistent with the known pathways than to the
known regulons or operons; (ii) neighborhood profiles or GO
assignments alone can provide sufficient information for
predicting modules that are fairly consistent with the known
functional modules, but phylogenetic profiles cannot; (iii) by
fusing the information from the GO, phylogenetic and neigh-
borhood profiles using the naive Bayesian inference and using
the combined information for module prediction, even higher
degrees of consistency can be achieved for the known func-
tional modules; (iv) most of the predicted modules can be
verified by Eco Cyc, KEGG or GO, and the unverified pre-
dicted modules reveal interesting gene functional relation-
ships that deserve further experimental investigations; and
(v) different threshold values can be used to predict functional
modules at different resolution levels.

(c)

Figure 12. Predicted modules that hemL (16128147) is involved for different values of a: (a) a = 6.75, (b) a = 5.5 and (c) a = 4.
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In our future study, we will apply the method presented
in this paper to other microbial genomes. Particularly, since
we have observed that the neighborhood profiles alone
can provide sufficient information for the prediction, we
will use the neighborhood profiles to evaluate the gene func-
tional relationships for those microbial genomes that have
already been completely sequenced but do not have much
other information (e.g. GO) available. We will also generalize
the current method of information fusion based on the
Bayesian inference to incorporate more sources of informa-
tion, e.g. microarray data. And finally, we will apply more
sophisticated methods to gene clustering so that even
higher degrees of consistency can be achieved for the
known functional modules.
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